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Real-time Controllable Motion Generation via
Latent Consistency Model

Wenxun Dai, Ling-Hao Chen, Yufei Huo, Jingbo Wang, Jinpeng Liu, Bo Dai, Yansong Tang

Abstract—Existing methods for spatial-temporal control in text-conditioned motion generation suffer from significant runtime
inefficiency. To address this issue, we first propose the motion latent consistency model (MotionLCM) for motion generation, building
on the motion latent diffusion model. By adopting one-step (or few-step) inference, we further improve the runtime efficiency of the
motion latent diffusion model for motion generation. To ensure effective controllability, we incorporate a motion ControlNet within the
latent space of MotionLCM and enable explicit control signals (i.e., initial motions) in the vanilla motion space to further provide
supervision for the training process. However, the suboptimal latent space caused by the single-latent-token compression leads to the
generation lacking expressive motion details. To tackle this limitation, we design a latent adapter to directly control the VAE
compression rate, thereby providing a more compact latent space for high-performance multi-latent-token consistency distillation
(MotionLCM-M). Besides, to support more general joint-based control, we propose consistency latent tuning, which leverages the
gradients of error from the motion space to iteratively refine the learnable latent noise, enabling MotionLCM-M to effectively handle
sparse control signals while preserving the naturalness of the generated motions. We also show our method can be extended to the
real-time music-to-dance task by jointly modeling the motion dynamics of the upper and lower body. Experimental results demonstrate
the remarkable generation and controlling capabilities of our method while maintaining real-time runtime efficiency. Our codes are
available at https://github.com/Dai-Wenxun/MotionLCM.

Index Terms—Text-to-Motion, Real-time Control, Consistency Model, Music-to-Dance.
✦

1 INTRODUCTION

T EXT-to-motion generation (T2M) has attracted increas-
ing attention [2], [5], [9], [13], [14] due to its important

roles in many applications [15], [16]. Previous attempts
mainly focus on GANs [13], [17], VAEs [2], [18]–[20] and
diffusion models [4]–[6], [21]–[24] via pairwise text-motion
data [1], [25]–[31] and achieve impressive generation results.
Existing approaches [4]–[6] mainly take diffusion mod-
els [32]–[35] as a base generative model, owing to their pow-
erful ability to model motion distribution. However, these
diffusion fashions inevitably require considerable sampling
steps for motion synthesis during inference, even with some
sampling acceleration methods [36]. Specifically, MDM [5]
and MLD [6] require ∼24s and ∼0.2s to generate a high-
quality motion sequence. Such low efficiency blocks the
applications of generating high-quality motions in various
real-time scenarios.

In addition to the language description itself serving
as a coarse control signal, another line of research focuses
on controlling the motion generation with spatial-temporal
constraints [23], [37], [38]. Although these attempts en-
joy impressive controlling ability in the T2M task, there
still exists a significant gap towards real-time applications.
For example, OmniControl [38] exhibits a relatively long
inference time, ∼81s per sequence. Therefore, trading-off
between generation quality and efficiency is a challenging
problem. As a result, in this paper, we target the real-time
controllable motion generation research problem.
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Fig. 1: Comparison of inference time costs on Hu-
manML3D [1]. We evaluate the performance of our methods
using AITS, FID, and R-Precision Top-1 metrics, benchmark-
ing them against the state-of-the-arts [1]–[11]. The statistics
are sourced from previous works [6], [9]–[12]. Our Mo-
tionLCM achieves real-time inference speed while ensuring
high-quality motion generation. MLD-M significantly im-
proves generation performance over its predecessor, MLD.
MotionLCM-M further advances the state of text-to-motion
generation by excelling in inference speed, motion genera-
tion quality, and motion-text alignment capability.

https://github.com/Dai-Wenxun/MotionLCM
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(a) VAE Reconstruction Examples 
“a person swings his right arm in a circle forward.”

VAE-2×256 VAE-5×256 Real

(b) VAE and MLD Performance Curve
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Fig. 2: (a) The reconstruction visualizations of VAEs with
different numbers of latent tokens. A closer match to the
real reference indicates better reconstruction precision. (b)
Comparison of FID scores across different VAE latent sizes
(i.e., compression rates). An uncontrolled compression rate
restricts MLD to low-quality single-latent-token diffusion
(i.e., 1x256), hindering the potential to achieve a higher
upper bound (e.g., 2x256, etc) for motion generation quality.
The statistics are sourced from MLD [6].

Recently, the concept of consistency models [39], [40]
has been introduced in image generation, resulting in sig-
nificant progress by enabling efficient and high-fidelity im-
age synthesis with a minimal number of sampling steps
(e.g., 4 steps vs. 50 steps). These properties perfectly align
with our goal of accelerating motion generation without
compromising generation quality. Therefore, we propose
MotionLCM (Motion Latent Consistency Model) distilled
from the motion latent diffusion model, MLD [6], to tackle
the low-efficiency problem in diffusion sampling. To the best
of our knowledge, we introduce consistency distillation into
the motion generation area for the first time and accelerate
motion generation to a real-time level (∼30ms per motion
sequence) via latent consistency distillation [40].

As the foundation for latent consistency distillation, the
VAE leverages the learnable Gaussian distribution parame-
ters to conduct motion compression and then samples the
latent tokens for the next stage of latent diffusion. This com-
pression process simplifies the complex motion distribution
into a target distribution that is easier for diffusion learning.
However, as shown in Figure 2a, decreasing the number
of latent tokens (i.e., the dimension of the latent space)
reduces the capture of expressive motion details, negatively
impacting both text matching and motion quality. However,
Figure 2b shows that simply increasing the number of latent
tokens results in decline in motion generation performance
as indicated by the green dashed curve. We attribute this to
the increased complexity of the target distribution caused
by a higher number of latent tokens, which makes diffu-
sion training more difficult. These issues limit the original
MLD and MotionLCM to single-latent-token learning (i.e.,
1x256), leading to a lower upper bound on motion gen-
eration quality compared to using VAEs with multi-latent-
token compression (e.g., 2x256, etc.). Therefore, we further
propose MotionLCM-M based on MLD-M, which employs
a latent adapter to directly control the size of the latent space

(i.e., compression rate). This elegant design (Section 3.2)
enables us to leverage the strong compression capability
of multi-latent tokens, providing a more compact latent
space for subsequent diffusion and consistency distillation.
As shown in Figure 1, MLD-M significantly outperforms
the vanilla MLD in both motion-text alignment capability
and motion generation quality. MotionLCM-M achieves an
approximately 10× improvement in FID (0.049), with an R-
Precision Top-1 score of 0.551, while maintaining real-time
inference speed (∼38ms per motion sequence).

Here, in MotionLCM, we are facing another challenge on
how to control motions with spatial-temporal signals (i.e.,
initial motions) in the latent space. Previous methods [23],
[38] model human motions in the vanilla motion space and
can manipulate the motion directly in the denoising pro-
cess. However, for our latent-diffusion-based MotionLCM,
it is non-trivial to feed the control signals into the latent
space. This is because the latent has no explicit motion
semantics, which cannot be manipulated directly by the
control signals. Inspired by the notable success of [41] in
controllable image generation [35], we introduce a motion
ControlNet to control motion generation in the latent space.
However, the naı̈ve motion ControlNet is not sufficient to
provide supervision for the control signals. The main reason
is the lack of explicit supervision in the motion space.
Therefore, during the training phase, we decode the pre-
dicted latent through the frozen VAE [42] decoder into the
vanilla motion space to provide explicit control supervision
on the generated motion. Thanks to the powerful one-step
inference capability of MotionLCM, the latent generated by
MotionLCM can significantly facilitate control supervision
both in the latent space and motion space for training the
motion ControlNet compared to MLD [6].

In contrast to initial motions as control signals, which
offer dense control across both temporal and spatial di-
mensions, controlling motion using sparse signals is more
challenging, e.g., controlling a hand joint at a specific
keyframe. Therefore, to support more general joint-based
control, we propose a consistency latent tuning (Section 3.5)
method that leverages the gradients of error from the mo-
tion space to iteratively refine the learnable latent noise,
ensuring alignment with the imposed sparse spatial con-
straints. Specifically, we first sample learnable latent noise
from standard Gaussian distribution and then use the frozen
MotionLCM and VAE decoder to perform one-step infer-
ence and generate the full motion sequence. This motion
sequence is used to align with the control signals to directly
fine-tune the learnable latent noise. However, relying solely
on the control loss from the vanilla motion space can cause
the generated motion to seek to strictly match the control
signals, resulting in unrealistic motion. Inspired by the
previous work [43], we introduce a latent decorrelation loss
across the latent tokens, which regularizes the latent noise
by decorrelating each latent dimension and significantly
reduces the issue of unnatural motion. The consistency
latent tuning method enables our MotionLCM-M to effec-
tively handle sparse control signals while preserving the
naturalness of the generated motion sequences.

Besides, we explore the potential application of motion
latent consistency distillation in the music-to-dance task
(Section 3.6). Compared to traditional text-to-motion gener-
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ation, dance motion requires more complex and expressive
movements from different body parts. Therefore, we employ
two independent VQ-VAEs [44] to separately encode the
upper and lower body, achieving part-based decoupling and
enhancing expressiveness. Additionally, we propose a VQ-
based motion latent diffusion model (VQ-MLD) that jointly
denoises the concatenated upper and lower body features
conditioned on music input. These denoised dual-part fea-
tures are then fed into their respective VQ-VAE decoders to
generate a coherent and natural dance motion sequence. By
performing latent consistency distillation on the pre-trained
VQ-MLD, we achieve real-time music-to-dance generation.

This paper is an extended version of our ECCV’24 con-
ference paper [12] with the following new contributions:

1) We further propose MotionLCM-M, which incorpo-
rates a latent adapter to directly control the VAE
compression rate, which effectively addresses the
lack of expressive motion details caused by the sub-
optimal latent space and thereby enabling a more
compact latent space for high-performance multi-
latent-token consistency distillation.

2) We introduce consistency latent tuning, which lever-
ages the gradients of error derived from the motion
space to iteratively refine the learnable latent noise.
This tuning paradigm enables MotionLCM-M to
effectively handle sparse control signals while pre-
serving the naturalness of the generated motions.

3) We extend our method to the music-to-dance task
by distilling the newly designed VQ-based motion
latent diffusion model (VQ-MLD), which jointly
models the motion dynamics of the upper and lower
body, achieving a new state-of-the-art performance
while maintaining real-time inference speed.

2 RELATED WORK

Generating human motions can be divided into three main
fashions according to inputs: motion synthesis (1) without
any condition [5], [45]–[47], (2) with some given multi-
modal conditions, such as action labels [18], [19], [48]–[51],
textual description [1]–[7], [9]–[11], [13]–[17], [20]–[24], [37],
[52]–[69], audio or music [70]–[78], (3) with user-defined
trajectories [23], [37], [38], [43], [59], [79]–[84]. In this section,
we present an overview of the related works from the
following three aspects: (1) text-to-motion, (2) controllable
motion generation, and (3) music-to-dance.
Text-to-Motion. JL2P [53] jointly embeds text and motion
using curriculum learning to prioritize shorter sequences
before longer, more complex ones. MotionCLIP [56] lever-
ages the knowledge embedded in CLIP for text-conditioned
motion generation. TEMOS [2] designs a variational autoen-
coder (VAE) to model motion sequences, generating diverse
motions. MDM [5] presents a motion diffusion model that
operates on raw motion data, offering both high-quality
generation and versatile conditioning, establishing a strong
baseline for new motion generation tasks. MLD [6] intro-
duces a latent diffusion model that enhances generation
quality while reducing computational resource demands.
ReMoDiffuse [8] integrates a retrieval mechanism to refine
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Fig. 3: The training objective of consistency distillation is
to learn a consistency function fΘ, initialized with the
parameters of a pre-trained diffusion model (e.g., MLD [6]).
This function fΘ should projects any points (i.e., zt) on
the ODE trajectory to its solution (i.e., z0). Once the pre-
trained model [6] is distilled, unlike the traditional de-
noising model [4], [5] that requires considerable sampling
steps, our MotionLCM can generate high-quality motion
sequences with one-step sampling and further improve the
generation quality through multi-step inference.

the motion denoising process, enhancing the generalizabil-
ity and diversity of text-driven motion generation. PhysD-
iff [22] proposes a physics-guided motion diffusion model
that generates physically plausible motions. TMR [57] incor-
porates a contrastive framework for retrieval-based motion
synthesis under text conditions. T2M-GPT [7] utilizes a
GPT-like model to generate high-quality human motions
from textual descriptions with discrete representations. Mo-
tionGPT [58] employs motion-language pre-training and
prompt learning to build a unified and versatile model for
diverse motion-related tasks, such as text-driven motion
generation. HumanTOMATO [14] presents a text-driven
framework for whole-body motion generation, applicable
to holistic motion synthesis. Momask [9] employs a hier-
archical quantization scheme for motion tokenization and
designs a masked transformer and residual transformer
to predict motion tokens. StableMoFusion [10] thoroughly
investigates network architectures, training strategies, and
inference processes in motion diffusion models. ScaMo [69]
introduces an auto-regressive motion generation framework
to explore scaling laws in the text-to-motion task.
Controllable Motion Generation. Shafir et al. [23] propose
PriorMDM, which achieves accurate control by blending
models with different control signals. GMD [37] introduces
a guided motion diffusion model that incorporates spatial
constraints into the motion generation process. OmniCon-
trol [38] integrates flexible spatial-temporal control signals
across different joints by combining analytic spatial guid-
ance with realism guidance. InterControl [79] presents a
novel controllable motion generation method designed to
maintain the desired distance between joint pairs in the
synthesized motions. TLControl [59] incorporates both tra-
jectory control and language semantics control through the
integration of neural-based and optimization-based tech-
niques. A-MDM [83] introduces an auto-regressive motion
diffusion model and incorporates interactive controls, en-
abling efficient adaptation to a variety of new downstream
tasks. The AAMDM [84] framework enhances interactive
control in motion synthesis by integrating denoising dif-
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fusion GANs with auto-regressive diffusion models in a
lower-dimensional embedded space. ControlMM [80] pro-
poses masked consistency modeling for high-fidelity motion
generation and uses inference-time logit editing to adjust
the predicted motion distribution, ensuring the generated
motion adheres to the input control signals.
Music-to-Dance. Li et al. [70] present a novel two-stream
motion transformer generative model that synthesizes
dance motion sequences with high flexibility. DanceNet [71]
introduces an autoregressive generative model that uses
the style, rhythm, and melody of music as control signals
to generate 3D dance motions characterized by both real-
ism and diversity. DanceRevolution [72] proposes a novel
Seq2Seq architecture for the music-conditioned dance gen-
eration task. FACT [73] incorporates a deep cross-modal
transformer block with full attention, trained to predict fu-
ture motion sequences. DanceFormer [74] reformulates the
music-to-dance task as a two-stage framework, involving
key pose generation followed by the prediction of para-
metric motion curves for intermediate frames. Bailando [75]
employs an actor-critic GPT model to compose dance units
into a coherent and fluent dance synchronized with the
music. EDGE [76] introduces an editable dance genera-
tion framework capable of producing realistic, physically
plausible dances that remain faithful to the input music.
FineDance [77] addresses the issue of monotonous and
unnatural hand movements in prior methods by proposing
a full-body dance generation network. Lodge [78] presents
a two-stage coarse-to-fine diffusion architecture and intro-
duces expressive dance primitives as intermediate represen-
tations between the two diffusion models.

3 METHOD

In this section, we first briefly introduce preliminaries about
latent consistency models in Section 3.1. Next, we illustrate
the technical design details of multi-latent-token diffusion
models in Section 3.2. Then, we describe how to con-
duct latent consistency distillation for motion generation
in Section 3.3, followed by our implementation of motion
control in latent space in Section 3.4. Next, we present the
consistency latent tuning method in Section 3.5. Finally, we
introduce our VQ-based motion latent diffusion framework
(VQ-MLD) for the music-to-dance task in Section 3.6. The
overall pipeline is illustrated in Figure 5.

3.1 Preliminaries

The Consistency Model (CM) [39] introduces a kind of
efficient generative model designed for efficient one-step or
few-step generation. Given a Probability Flow ODE (a.k.a.
PF-ODE) that smoothly converts data to noise, the CM is to
learn the function f(·, ·) that maps any points on the ODE
trajectory to its origin distribution (i.e., the solution of the
PF-ODE). The consistency function is formally defined as
f : (xt, t) 7−→ xϵ, where t ∈ [ϵ, T ], T > 0 is a fixed constant
and ϵ is a small positive number to avoid numerical instabil-
ity. According to [39], the consistency function should satisfy
the self-consistency property:

f(xt, t) = f(xt′ , t
′),∀t, t′ ∈ [ϵ, T ]. (1)
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Fig. 4: Comparison of latent space construction between
MLD and MLD-M. (a) The VAE encoder compresses the mo-
tion sequence using the learnable Gaussian distribution pa-
rameters (i.e., µi and σi) to fuse the projected pose features.
(b) In the original MLD, the diffusion latent tokens zi are
directly sampled from the Gaussian distribution N (µ, σ2),
resulting in the final compression rate of p×r (i.e., the size of
the latent space). In MLD-M, a latent adapter is adopted to
control the compression rate (i.e., p× r

α ), thereby avoiding a
continuous decrease in the compression rate as the number
of tokens p increases and providing a more compact latent
space for the next-stage latent diffusion.

As shown in Equation (1), the self-consistency property
indicates that for arbitrary pairs of (xt, t) on the same
PF-ODE trajectory, the outputs of the model should be
consistent. The goal of a parameterized consistency model
fΘ is to learn a consistency function from data by enforcing
the self-consistency property in Equation (1). To ensure that
fΘ(x, ϵ) = x, the consistency model fΘ is parameterized as,

fΘ(x, t) = cskip(t)x+ cout(t)FΘ(x, t), (2)

where cskip(t) and cout(t) are differentiable functions with
cskip(ϵ) = 1 and cout(ϵ) = 0, and FΘ(·, ·) is a deep neural
network to learn the self-consistency. The CM trained from
distilling the knowledge of pre-trained diffusion models is
called Consistency Distillation. The consistency loss is defined
as follows,

L(Θ,Θ−;Φ) = E
[
d
(

fΘ(xtn+1
, tn+1), fΘ−(x̂

Φ
tn , tn)

)]
,

(3)
where d(·, ·) is a chosen metric function for measuring
the distance between two samples. fΘ(·, ·) and fΘ−(·, ·)
are referred to as “online network” and “target network”
according to [39]. Besides, Θ− is updated with the expo-
nential moving average (EMA) of the parameters of Θ 1.
In Equation (3), x̂Φ

tn is a one-step estimation of xtn from
xtn+1 , which is formulated as,

x̂Φ
tn ← xtn+1

+ (tn − tn+1)Φ(xtn+1
, tn+1, ∅), (4)

where Φ is a one-step ODE solver applied to PF-ODE.

1. EMA operation: Θ− ← sg(µΘ−+(1−µ)Θ), where sg(·) denotes
the stopgrad operation and µ satisfies 0 ≤ µ < 1.
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Fig. 5: The overview of MotionLCM. (a) Motion Latent Consistency Distillation (Section 3.3). Given a raw motion sequence
x1:N
0 , a pre-trained VAE [42] encoder first compresses it into the latent space, then a forward diffusion operation is

performed to add n+ k steps of noise. Then, the noisy zn+k is fed into the online network and teacher network to predict
the clean latent. The target network takes the k-step estimation results of the teacher output to predict the clean latent. To
learn self-consistency, a loss is applied to enforce the output of the online network and target network to be consistent.
(b) Motion Control in Latent Space (Section 3.4). With the powerful MotionLCM trained in the first stage, we incorporate a
motion ControlNet into the MotionLCM to achieve controllable motion generation. Furthermore, we leverage the decoded
motion to explicitly supervise the spatial-temporal control signals (i.e., initial poses g1:τ ).

The Latent Consistency Model (LCM) [40] learns the self-
consistency property in the latent space Dz = {(z, c)|z =
E(x), (x, c) ∈ D}, where D denotes the dataset, c is the
given condition, and E is the pre-trained encoder. Com-
pared to CMs [39] using the numerical continuous PF-ODE
solver [85], LCMs [40] adopt the discrete-time schedule [36],
[86], [87] to adapt to Stable Diffusion [35]. Instead of en-
suring consistency between adjacent time steps tn+1 → tn,
LCMs [40] are designed to ensure consistency between the
current time step and k-step away, i.e., tn+k → tn, thereby
significantly reducing convergence time costs. As classifier-
free guidance (CFG) [88] plays a crucial role in synthesizing
high-quality text-aligned images, LCMs integrate CFG into
the distillation as follows,

ẑΦ,w
tn ← ztn+k

+ (1 + w)Φ(ztn+k
, tn+k, tn, c)

− wΦ(ztn+k
, tn+k, tn, ∅), (5)

where w denotes the CFG scale which is uniformly sampled
from [wmin, wmax] and k is the skipping interval. To effi-
ciently perform the above k-step guided distillation, LCMs
augment the consistency function to f : (zt, t, w, c) 7−→ z0,
which is also the form adopted by our MotionLCM.

3.2 Multi-Latent-Token Diffusion Models
The success of the motion latent diffusion paradigm [6] fun-
damentally relies on the achieved perceptual compression
of the first-stage VAE, i.e., removing high-frequency mo-
tion details while preserving essential semantic information.
This enables the second-stage MLD to focus on learning
the semantic and conceptual composition of the motion
data, i.e., semantic compression. This principle has also
been validated in Stable Diffusion [35]. Therefore, the key
to improving the motion generation performance of MLD
lies in obtaining an optimal latent space. Additionally, the
latent space must carefully balance a suitable compression

rate (i.e., the size of the latent space) with the preservation
of critical semantic information, allowing the MLD to uti-
lize semantically rich latent representations for high-quality
motion generation. As shown in Figure 4, in the vanilla
MLD [6], the VAE encoder performs motion compression
using the learnable Gaussian distribution parameters (i.e., µi

and σi) to fuse the projected pose features. It then samples
latent tokens zi from the Gaussian distribution N (µ, σ2)
for the next stage of latent diffusion. The hidden dimen-
sion of the VAE encoder is denoted as r and the number
of latent tokens is p. This leads to the final compression
rate of p × r. However, we observe that increasing the
number of latent tokens p improves motion reconstruction
precision, but it leads to an unstable decline in motion
generation capability as shown in Figure 2b. We attribute
this to the uncontrolled compression rate, where increasing
the number of latent tokens directly leads to a continu-
ous decline in the compression rate (i.e., 1x256→10x256).
This is because the original MLD samples latent tokens
directly from the Gaussian distribution N (µ, σ2) encoded
by the VAE encoder. The uncontrolled compression rate
results in leaving most of the perceptual compression to
the diffusion model, thus hindering the ability to generate
high-quality motions. These issues result in the original
MLD being limited to single-latent-token learning (i.e., 1x256)
for diffusion training, leading to a lower upper bound on
motion generation quality compared to using VAEs with
multi-latent tokens (e.g., 2x256, etc). Therefore, to enable
multi-latent-token learning for high-performance diffusion,
as shown in Figure 4b, in MLD-M, we add a linear layer as
the latent adapter to adapt the dimension of the embedded
distribution parameters to directly control the size of the
latent space N (µ

′
, σ

′2). This elegant design enables us to
harness the strong compression capability of multi-latent
tokens while maintaining control over the compression rate,
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Fig. 6: Consistency Latent Tuning. We first sample the latent
noise zT from N (0, I) and predict the motion sequence
through one-step inference with the frozen MotionLCM and
VAE decoder D. Next, we extract the global absolute loca-
tions (in green) of the control joint (i.e., root) to align them
with the predefined trajectory (in red) using the control
loss Lcontrol. The introduction of the motion ControlNet is
optional as the MotionLCM itself can serve as a powerful
motion prior to our consistency latent tuning.

thereby providing a more compact latent space for the sub-
sequent diffusion stage. Extensive experiments show that
by controlling the compression rate using the latent adapter,
we enable high-performance multi-latent-token diffusion.

3.3 MotionLCM: Motion Latent Consistency Model

Motion compression into the latent space. Motivated
by [39], [40], we propose MotionLCM (Motion Latent
Consistency Model) to tackle the low-efficiency problem in
motion diffusion models [4], [5], unleashing the potential
of LCM in the motion generation task. Similar to MLD [6],
our MotionLCM adopts a consistency model in the motion
latent space. We choose MLD [6] as the underlying diffusion
model to distill from. We aim to achieve few-step (2∼4)
and even one-step inference without compromising motion
quality. In MLD, an autoencoder (E , D) is first trained to
compress a high dimensional motion into low dimensional
latent vectors z = E(x), which are then decoded to recon-
struct the motion as x̂ = D(z). Training diffusion models in
the motion latent space greatly reduces the computational
resources compared to the vanilla diffusion models trained
on raw motion sequences (i.e., motion space) and speeds
up the inference process. Thus, we effectively leverage the
motion latent space for consistency distillation.
Motion latent consistency distillation. An overview of our
motion latent consistency distillation is described in Fig-
ure 5a. A raw motion sequence x1:N

0 = {xi}Ni=1 is a sequence
of human poses, where N is the number of frames. We
follow [1] to use the redundant motion representation for
our experiments, which is widely used in previous work [4]–
[6]. As shown in Figure 5a, given a raw motion sequence
x1:N
0 , a pre-trained VAE [42] encoder first compresses it

into the latent space, z0 = E(x0). Then, a forward diffusion
operation with n+ k steps is conducted to add noise on z0,
where k is the skipping interval illustrated in Section 3.1.
The noisy zn+k is fed to the frozen teacher network and
trainable online network to predict the clean ẑ∗0, and ẑ0. The
target network uses the cleaner ẑn obtained by a k-step ODE
solver Φ, such as DDIM [36] to predict the ẑ−0 . Since the

classifier-free guidance (CFG) [88] is essential for condition
alignment in diffusion models [5], [6], [35], we integrate CFG
into the distillation,

ẑn ← zn+k + (1 + w)Φ(zn+k, tn+k, tn, c)

− wΦ(zn+k, tn+k, tn, ∅), (6)

where c is the text condition and w denotes the guidance
scale. To ensure the self-consistency property defined in
Equation (1), the latent consistency distillation loss LLCD is
designed as follows,

LLCD(Θ,Θ−) = E
[
d
(
fΘ(zn+k, tn+k, w, c),

fΘ−(ẑn, tn, w, c)
)]

, (7)

where d(·, ·) is a distance measuring function, such as
L2 loss or Huber loss [89]. As discussed in Section 3.1,
the target network Θ− is updated with the exponential
moving average (EMA) of the trainable parameters of the
online network Θ. Here we define the teacher network
Θ∗ as the pre-trained motion latent diffusion model, i.e.,
MLD [6]. According to [40], the online network and target
network are initialized with the parameters of the teacher
network. During the inference phase, as shown in Figure 8,
our MotionLCM can generate high-quality motions with
one-step sampling and achieve the fastest runtime (∼30ms
per motion sequence) compared to other motion diffu-
sion models [5], [6]. Based on multi-latent-token learning,
MotionLCM-M is capable of generating motion with richer
details while maintaining real-time runtime efficiency.

3.4 Controllable Motion Generation in Latent Space
After addressing the low-efficiency issue in the motion
latent diffusion model [6], we delve into another exploration
of real-time motion control. Inspired by the great success
of ControlNet [41] in controllable image generation [35],
we introduce a motion ControlNet Θa in the latent space
of MotionLCM and initialize the motion ControlNet with
a trainable copy of MotionLCM. Specifically, each layer in
the motion ControlNet is appended with a zero-initialized
linear layer for eliminating random noise in the initial train-
ing steps. To achieve an autoregressive motion generation
paradigm, we define the motion control task as generating
motions given the initial τ poses and textual description.
As shown in Figure 5b, the initial τ poses are defined by
the trajectories of K control joints, g1:τ = {gi}τi=1, where
gi ∈ RK×3 denotes the global absolute locations of each
control joint. In our motion control pipeline, we design a
Trajectory Encoder Θb consisting of stacked transformer [90]
layers to encode the trajectory signals. We append a global
token (i.e., [CLS]) before the start of the trajectory sequence
as the output feature of the encoder, which is added to
the noisy zn and fed into the trainable motion ControlNet
Θa. Under the guidance of motion ControlNet, MotionLCM
predicts the denoised ẑ0 through the consistency function
fΘs , where Θs is the combination of Θa, Θb and Θ. The
following reconstruction loss Lrecon optimizes the motion
ControlNet Θa and Trajectory Encoder Θb,

Lrecon(Θ
a,Θb) = E

[
d
(
fΘs (zn, tn, w, c

∗) , z0
)]

, (8)

where c∗ includes the text condition and control guidance
from the Trajectory Encoder and the motion ControlNet.
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Fig. 7: (a) We employ two independent VQ-VAEs [44] to
separately model the upper and lower body parts, pro-
viding more expressive latent representations for the next
stage of diffusion training. (b) We design a transformer-
based denoiser that jointly denoises the dual-part body
features conditioned on music input. (c) During inference,
the music acts as the control signal, guiding the denoiser in
generating dual-part body features through multiple rounds
of denoising. These features are then divided into upper-
body and lower-body components, which are subsequently
quantized and decoded to produce the final dance sequence.

However, during training, the sole reconstruction super-
vision in the latent space is insufficient. We argue this is
because the controllable motion generation requires more
detailed constraints, which cannot be effectively provided
solely by the reconstruction loss in the latent space. Unlike
previous methods like OmniControl [38], which directly
diffuse in the motion space, allowing explicit supervision
of control signals, effectively supervising control signals
in the latent space is non-trivial. Therefore, we utilize the
frozen VAE [42] decoder D to decode the latent ẑ0 into the
motion space, obtaining the predicted motion x̂0, thereby
introducing the control loss Lcontrol as follows,

Lcontrol(Θ
a,Θb) = E

[∑
i

∑
j mij ||R(x̂0)ij −R(x0)ij ||22∑

i

∑
j mij

]
,

(9)
where R(·) converts the joint local positions to global ab-
solute locations and mij ∈ {0, 1} is the binary joint mask
at frame i for the joint j. Then we optimize the motion
ControlNet Θa and Trajectory Encoder Θb with the overall
objective,

Θa,Θb = argmin
Θa,Θb

(Lrecon + λLcontrol), (10)

where λ is the weight to balance the two losses. This design
enables explicit control signals in the vanilla motion space
to further provide supervision for the generation process.

Extensive experiments demonstrate that the introduced su-
pervision is beneficial in improving motion control perfor-
mance, which will be introduced in the following section.

3.5 Consistency Latent Tuning

Compared to the initial poses in Figure 5b as control sig-
nals, which provide dense control across both temporal and
spatial dimensions, controlling motion using sparse signals
is more challenging, such as controlling a hand joint at
a specific keyframe. To address this issue, we propose a
consistency latent tuning method. As shown in Figure 6,
we first sample a leanable latent noise zT from the standard
Gaussian distribution N (0, I), and then use the frozen Mo-
tionLCM and VAE decoder D to perform one-step inference
to generate the full motion sequence. Taking the root joint
control as an example (in red), we extract the global absolute
locations of the root joint from the generated motion (in
green) and fine-tune the latent noise zT using the control
loss Lcontrol defined in Equation (9). Notably, the introduc-
tion of the motion ControlNet is optional, which means that
MotionLCM itself can serve as a powerful motion prior for
our consistency latent tuning. However, relying solely on
the control loss Lcontrol can lead to unrealistic motion, such
as foot sliding. This happens because the generated motion
seeks to strictly match the control signals. Inspired by the
previous work [43], we introduce a latent decorrelation loss
across the latent tokens, which regularizes the latent noise
by decorrelating each latent dimension and significantly
reduces the issue of unnatural motion. The latent decorrela-
tion loss Lm

decorr is defined as follows,

Lm
decorr =

1

mr

m∑
i=1

zmT (i)⊤zmT (i+ 1), (11)

where r is the dimension size of the latent tokens. We
employ this loss at several scales across the number of latent
tokens m ∈ {M,M/2,M/4, ..., 2}. Specifically, assuming
the initial number of latent tokens is M , we progressively
downsample the number of tokens by half using average
pooling on two consecutive tokens. Then we fine-tune the
latent noise zT with the following objective,

zT = argmin
zT

(Lcontrol + λdecorr

∑
m

Lm
decorr), (12)

where λdecorr is the weight to control the latent decorrela-
tion loss. Based on the powerful MotionLCM motion prior,
our consistency latent tuning enables precise control over
any joint at any time, while achieving high-quality motion
generation and strong motion-text alignment capability.

3.6 MotionLCM for Music-to-Dance

Compared to traditional text-to-motion generation, dance
motion requires more complex and expressive movements
from different body parts. Therefore, we first adopt two
independent VQ-VAEs [44] to separately encode the upper
and lower body, achieving part-based decoupling into the
discrete latent space. Additionally, we introduce our VQ-
based motion latent diffusion model (VQ-MLD) to jointly
denoise the concatenated upper and lower body features
conditioned on music input. During the inference stage, the
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“a person walks clockwise in a large curve while swinging their arms.”
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Fig. 8: Qualitative comparison of the state-of-the-art methods in the text-to-motion task. With only one-step inference,
MotionLCM achieves the fastest motion generation while producing high-quality movements that closely match the
textual descriptions. MLD-M and MotionLCM-M exhibit superior motion-text alignment capability and greater expertise
in generating motions with rich details, which validates the effectiveness of multi-latent-token learning. Moreover, the
inference time for MotionLCM-M (1-step) remains nearly equivalent to that of its predecessor (∼31ms per motion sequence).

denoised dual-part body features are split and fed into their
respective VQ-VAE codebooks and decoders to generate a
coherent and natural dance motion sequence. The overall
framework is illustrated in Figure 7.
Part-based decoupling into the discrete latent space. As
shown in Figure 7a, the reconstruction training process of
the part-based VQ-VAE is specifically designed to inde-
pendently encode and decode the motion sequence for the
upper and lower body. The input motion sequence x0 is
first split into upper and lower body parts, which are then
encoded by the encoders, θEnc

up and θEnc
low. These encoders

generate the dual-part body features zup and zlow, which
are then fed into the codebooks for quantization as follows,

eup
q (i) = argmin

eup(j)∈Σup

∥zup(i)− eup(j)∥2, (13)

elow
q (i) = argmin

elow(j)∈Σlow

∥zlow(i)− elow(j)∥2, (14)

where Σup = {eup(i)}Ci=1 and Σlow = {elow(i)}Ci=1 are
the codebooks with size of C . The quantized features are
subsequently fed into the decoders, θDec

up and θDec
low , to recon-

struct the upper and lower body parts, then concatenated to
form the complete dance motion sequence x̂0. We use the
following VQ loss LVQ to train the part-based VQ-VAE,

LVQ = ∥x̂0−x0∥1+∥sg[z0]−eq∥1+λcommit∥z0−sg[eq]∥1,
(15)

where z0 and eq are the concatenated body features (i.e.,
zup and zlow) and quantized features (i.e., e

up
q and elow

q ).
λcommit is the weight of commitment loss and sg[·] denotes
the stopgrad operation. The first term focuses on motion
reconstruction, the second term optimizes the codebook for
effective quantization, and the third term ensures consis-
tency between the body features and the quantized features.
Leveraging the part-based VQ-VAE, we effectively decouple
the upper and lower body parts, enabling more expressive
latent representations for the next stage of diffusion training.
VQ-based latent diffusion for dance generation. As shown
in Figure 7b, our VQ-based motion latent diffusion model
(VQ-MLD) is designed to denoise the dual-part body fea-
tures conditioned on music input. We first apply a for-
ward diffusion operation with t steps to the concatenated
encoded features z0 to obtain the noisy zt. Then, we use
a transformer-based [90] denoiser to perform denoising,
conditioned on the time step t and music features c. Fol-
lowing [32], we optimize the denoiser θ using the following
diffusion loss Ldiff,

Ldiff = E
[
∥z0 − ẑθ0(zt, t, c)∥22

]
. (16)

As shown in Figure 7c, we first sample a latent noise zT from
the standard Gaussian distribution N (0, I), and then per-
form multiple iterations of denoising to obtain the clean la-
tent representation ẑθ0. This latent representation is then split
into upper and lower body features, quantized, and finally
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TABLE 1: Comparison of VAE and MLD-M performance for different latent sizes (i.e., compression rates). We conduct
three groups of experiments with compression rates of 512, 256, and 128. Within each group, we perform four control
experiments to explore the impact of varying the number of latent tokens on reconstruction and generation performance.
The results indicate that increasing the number of latent tokens generally enhances the motion reconstruction precision of
VAE and additionally improves the motion generation quality of MLD-M. All models are tested using the last checkpoint.
MLD-M uses CFG 7.5 and DDIM [36] 50 steps for inference to ensure a fair comparison. Top k is for R-Precision Top k.

Latents VAE Performance MLD-M Performance

FID ↓ MPJPE ↓ Fea. err. ↓ AITS ↓ Top 1 ↑ Top 2 ↑ Top 3 ↑ FID ↓ MM Dist ↓ Diversity → MModality ↑

2×256 0.044 22.0 0.272 0.270 0.523±.002 0.718±.003 0.813±.002 0.255±.007 2.913±.007 9.444±.075 1.816±.052

4×128 0.013 14.6 0.194 0.287 0.557±.003 0.749±.002 0.838±.002 0.142±.004 2.763±.006 9.785±.087 1.458±.043

8×64 0.008 13.6 0.184 0.291 0.543±.003 0.735±.002 0.828±.002 0.119±.005 2.829±.009 9.720±.075 1.727±.048

16×32 0.008 14.5 0.199 0.295 0.546±.003 0.738±.003 0.829±.002 0.076±.004 2.806±.007 9.627±.066 1.668±.055

1×256 0.118 41.2 0.443 0.225 0.526±.003 0.718±.003 0.812±.002 0.325±.009 2.920±.009 9.696±.081 1.675±.048

2×128 0.049 25.9 0.308 0.275 0.542±.002 0.733±.002 0.823±.002 0.153±.005 2.826±.006 9.707±.063 1.138±.036

4×64 0.023 21.8 0.269 0.285 0.547±.003 0.738±.003 0.828±.002 0.137±.004 2.801±.008 9.763±.093 1.335±.044

8×32 0.022 21.4 0.273 0.290 0.545±.003 0.737±.003 0.827±.002 0.102±.004 2.820±.008 9.744±.079 1.494±.057

1×128 0.121 45.0 0.477 0.225 0.506±.003 0.695±.003 0.792±.002 0.378±.011 3.036±.009 9.408±.108 1.013±.028

2×64 0.066 36.4 0.393 0.269 0.539±.003 0.731±.003 0.822±.002 0.167±.006 2.864±.008 9.726±.091 1.104±.037

4×32 0.048 32.9 0.377 0.284 0.539±.003 0.727±.003 0.819±.002 0.110±.004 2.858±.009 9.629±.068 1.281±.037

8×16 0.045 36.9 0.405 0.289 0.524±.002 0.714±.002 0.809±.002 0.091±.003 2.929±.008 9.581±.057 1.395±.048

decoded by their respective VQ-VAE decoders. The decoded
outputs are concatenated to generate the final natural dance
motion sequence. Leveraging the pre-trained VQ-MLD, we
successfully perform latent consistency distillation for the
music-to-dance task. Our MotionLCM achieves real-time
music-to-dance generation, producing high-quality dance
sequences with exceptional motion expressiveness.

4 EXPERIMENTS

4.1 Controllable Text-to-Motion Generation
4.1.1 Experimental setup
Datasets. We experiment on the popular HumanML3D [1]
dataset, featuring 14,616 unique human motion sequences
with 44,970 textual descriptions. For a fair comparison with
previous methods [1], [2], [4]–[6], we take the redundant
motion representation, including root velocity, root height,
local joint positions, velocities, rotations in root space, and
the foot contact binary labels.
Evaluation metrics. We extend the evaluation metrics of
previous works [1], [6], [38]. (1) Time cost: We follow [6]
to report the Average Inference Time per Sentence (AITS)
to evaluate the inference efficiency of models. (2) Motion
quality: Frechet Inception Distance (FID) is adopted as a
principal metric to evaluate the feature distributions be-
tween the generated and real motions. The feature extractor
employed is from [1]. (3) Motion diversity: MultiModality
(MModality) measures the generation diversity conditioned
on the same text and Diversity calculates variance through
features [1]. (4) Condition matching: Following [1], we cal-
culate the motion-retrieval precision (R-Precision) to report
the text-motion Top-1/2/3 matching accuracy and Multi-
modal Distance (MM Dist) calculates the mean distance
between motions and texts. (5) Control error: Trajectory
error (Traj. err.) quantifies the ratio of unsuccessful tra-
jectories, characterized by any control joint location error
surpassing a predetermined threshold. Location error (Loc.
err.) represents the unsuccessful joints. Average error (Avg.
err.) denotes the mean location error of the control joints.

(6) Reconstruction error: MPJPE measures the average Eu-
clidean distance between reconstructed and ground truth
joint positions after aligning the root (pelvis). Feature error
(Fea. err.) refers to the L2 norm between the reconstructed
motion features and the real motion features.
Implementation details. Our baseline motion diffusion
model is based on MLD [6]. We reproduce MLD with higher
performance. Unless otherwise specified, all our experi-
ments are conducted on this model. For MotionLCM, we
employ the AdamW [91] optimizer for 96K iterations using
a cosine decay learning rate scheduler and 1K iterations of
linear warm-up. A batch size of 256 and a learning rate of
2e-4 are used. We set the training guidance scale range as
[wmin, wmax] = [5, 15], with the testing guidance scale set to
7.5, and adopt the EMA rate µ = 0.95 by default. We use the
DDIM [36] solver with skipping interval k = 20 and choose
the Huber [89] loss as the distance measuring function d. For
multi-latent-token training, the VAE and MLD-M are trained
using the AdamW [91] optimizer for 6K and 3K epochs,
respectively, with a cosine decay learning rate scheduler and
1K iterations of linear warm-up. The learning rates are set
to 2e-4 and 1e-4, with batch sizes of 128 and 64, respectively.
For MotionLCM-M, we adopt a batch size of 128 and 192K
training iterations. We increase the skipping interval k to
100 and dynamically select the testing guidance scale based
on the number of inference steps. The remaining settings
are consistent with those of its predecessor. For motion
ControlNet, we use the AdamW [91] optimizer for 192K
iterations with 1K iterations of linear warm-up. The batch
size and learning rate are set to 128 and 1e-4. The learning
rate scheduler is the same as the first stage. For the training
objective, we employ d as the L2 loss and set the control
loss weight λ to 1.0 by default. We set the control ratio τ as
0.25 and the number of control joints as K = 6 (i.e., Pelvis,
Left foot, Right foot, Head, Left wrist, and Right wrist) in both
training and testing. We adopt the experimental settings
from OmniControl [38] to perform the joint-based control
experiments, where each of the K control joints mentioned
above is tested individually. For consistency latent tuning,
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TABLE 2: Comparison of text-conditional motion synthesis on HumanML3D [1] dataset. We compute suggested metrics
following [1]. We repeat the evaluation 20 times for each metric and report the average with a 95% confidence interval.
“→” indicates that the closer to the real data, the better. Bold and underline indicate the best and the second best result. “∗”
denotes the reproduced version of MLD [6]. The MotionLCM in one-step inference (30ms) surpasses most state-of-the-art
models [2], [4]–[6]. The generation performance of MLD-M and MotionLCM-M are significantly improved compared to
their predecessors, achieving the state-of-the-art on this challenging benchmark.

Methods AITS ↓ R-Precision ↑ FID ↓ MM Dist ↓ Diversity → MModality ↑
Top 1 Top 2 Top 3

Real - 0.511±.003 0.703±.003 0.797±.002 0.002±.000 2.974±.008 9.503±.065 -

Seq2Seq [52] - 0.180±.002 0.300±.002 0.396±.002 11.75±.035 5.529±.007 6.223±.061 -
JL2P [53] - 0.246±.002 0.387±.002 0.486±.002 11.02±.046 5.296±.008 7.676±.058 -
T2G [54] - 0.165±.001 0.267±.002 0.345±.002 7.664±.030 6.030±.008 6.409±.071 -
Hier [55] - 0.301±.002 0.425±.002 0.552±.004 6.532±.024 5.012±.018 8.332±.042 -
TEMOS [2] 0.017 0.424±.002 0.612±.002 0.722±.002 3.734±.028 3.703±.008 8.973±.071 0.368±.018

T2M [1] 0.038 0.457±.002 0.639±.003 0.740±.003 1.067±.002 3.340±.008 9.188±.002 2.090±.083

TM2T [3] 0.760 0.424±.003 0.618±.003 0.729±.002 1.501±.017 3.467±.011 8.589±.076 2.424±.093

MotionDiffuse [4] 14.74 0.491±.001 0.681±.001 0.782±.001 0.630±.001 3.113±.001 9.410±.049 1.553±.042

MDM [5] 24.74 0.320±.005 0.498±.004 0.611±.007 0.544±.044 5.566±.027 9.559±.086 2.799±.072

MLD [6] 0.217 0.481±.003 0.673±.003 0.772±.002 0.473±.013 3.196±.010 9.724±.082 2.413±.079

T2M-GPT [7] 0.380 0.492±.003 0.679±.002 0.775±.002 0.141±.005 3.121±.009 9.722±.082 1.831±.048

ReMoDiffuse [8] 0.624 0.510±.005 0.698±.006 0.795±.004 0.103±.004 2.974±.016 9.018±.075 1.795±.043

MoMask [9] 0.120 0.521±.002 0.713±.002 0.807±.002 0.045±.002 2.958±.008 9.675±.068 1.241±.040

StableMoFusion [10] 0.499 0.553±.003 0.748±.002 0.841±.002 0.098±.003 2.770±.006 9.748±.092 1.774±.051

MotionCLR [11] 0.343 0.542±.001 0.733±.002 0.827±.003 0.099±.003 2.981±.011 9.846±.080 2.145±.043

MLD∗ [6] 0.225 0.504±.002 0.698±.003 0.796±.002 0.450±.011 3.052±.009 9.634±.064 2.267±.082

MotionLCM (1-step) 0.030 0.502±.003 0.701±.002 0.803±.002 0.467±.012 3.022±.009 9.631±.066 2.172±.082

MotionLCM (2-step) 0.035 0.505±.003 0.705±.002 0.805±.002 0.368±.011 2.986±.008 9.640±.052 2.187±.094

MotionLCM (4-step) 0.043 0.502±.003 0.698±.002 0.798±.002 0.304±.012 3.012±.007 9.607±.066 2.259±.092

B2A-HDM [94] - 0.511±.002 0.699±.002 0.791±.002 0.084±.004 3.020±.010 9.526±.080 1.914±.078

MLD-M (CFG=7.5) 0.295 0.548±.003 0.738±.003 0.829±.002 0.073±.003 2.810±.008 9.658±.089 1.675±.055

MLD-M (CFG=12.5) 0.295 0.544±.003 0.736±.002 0.827±.002 0.049±.002 2.828±.007 9.531±.087 1.672±.051

MotionLCM-M (1-step) 0.031 0.546±.003 0.743±.002 0.837±.002 0.072±.003 2.767±.007 9.577±.070 1.858±.056

MotionLCM-M (2-step) 0.038 0.551±.003 0.745±.002 0.836±.002 0.049±.003 2.765±.008 9.584±.066 1.833±.052

MotionLCM-M (4-step) 0.050 0.553±.003 0.746±.002 0.837±.002 0.056±.003 2.773±.009 9.598±.067 1.758±.056

we use Adam [92] optimizer for 400 iterations with 50
iterations of linear warm-up. The learning rate is set to 0.1
and gradient clipping is adopted. The latent decorrelation
loss weight λdecorr is set to 100 by default. We implement
our model using PyTorch [93] with training on an NVIDIA
RTX 4090 GPU and testing on a Tesla V100 GPU.

4.1.2 Explorations of Multi-Latent-Token Diffusion

The best practice for training motion latent diffusion model
is first to obtain a semantically rich and compact latent
space. Accordingly, the VAE must balance the compression
rate (i.e., latent size) while enhancing its motion reconstruc-
tion capability. To validate the effectiveness of our proposed
latent adapter for high-performance multi-latent-token dif-
fusion (MLD-M), we conduct extensive exploratory exper-
iments in Table 1. Specifically, we divide the experiments
into three groups, each representing the same compression
rate (i.e., 128, 256, and 512). We observe that under the same
compression rate, increasing the number of latent tokens
continuously improves the motion reconstruction precision
of the VAE, which enhances the motion generation quality
of MLD-M (i.e., FID score). Moreover, increasing the number

of latent tokens slightly increases the inference time AITS
but remains within an acceptable range (0.2s∼0.3s). Addi-
tionally, the motion-text matching performance fluctuates
accordingly. Therefore, considering both the text alignment
capability and motion generation quality of MLD-M, we
select the model with the latent size of 16×32 as our reported
MLD-M. The reported MotionLCM-M is distilled from the
best FID checkpoint of MLD-M (16x32).

4.1.3 Comparisons on Text-to-motion

In the following part, we first evaluate our MotionLCM on
the text-to-motion (T2M) task. We compare our method with
some T2M baselines on HumanML3D [1] with suggested
metrics [1] under the 95% confidence interval from 20 times
running. As MotionLCM is based on MLD, we mainly focus
on the performance compared with MLD. For evaluating
time efficiency, we compare the Average Inference Time
per Sentence (AITS) with previous methods [1]–[11]. The
results are borrowed from previous works [6], [9]–[12].
The deterministic methods [52]–[55], are unable to produce
diverse results from a single input text and thus we leave
their MModality metrics empty. For the quantitative results,
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TABLE 3: Comparison of initial-motion-based motion control on HumanML3D [1] dataset. Bold and underline indicate the
best and the second best result. Our MotionLCM outperforms OmniControl [38] and MLD [6] regarding generation quality,
control performance, and inference speed. MotionLCM-M further extends the leading performance. “LC” and “MC” refer
to the control supervision introduced in the latent space and motion space.

Methods AITS ↓ FID ↓ R-Precision ↑ Diversity → Traj. err. ↓ Loc. err. ↓ Avg. err. ↓
Top 3 (50cm) (50cm)

Real - 0.002 0.797 9.503 0.0000 0.0000 0.0000

OmniControl [38] 81.00 2.328 0.557 8.867 0.3362 0.0322 0.0977

MLD [6] (LC) 0.552 0.469 0.723 9.476 0.4230 0.0653 0.1690
MotionLCM (1-step, LC) 0.042 0.319 0.752 9.424 0.2986 0.0344 0.1410
MotionLCM (2-step, LC) 0.047 0.315 0.770 9.427 0.2840 0.0328 0.1365
MotionLCM (4-step, LC) 0.063 0.328 0.745 9.441 0.2973 0.0339 0.1398

MotionLCM-M (1-step, LC) 0.044 0.265 0.791 9.689 0.0522 0.0080 0.0659
MotionLCM-M (2-step, LC) 0.050 0.209 0.800 9.779 0.0525 0.0082 0.0664
MotionLCM-M (4-step, LC) 0.066 0.195 0.803 9.839 0.0537 0.0084 0.0666

MLD [6] (LC&MC) 0.552 0.555 0.754 9.373 0.2722 0.0215 0.1265
MotionLCM (1-step, LC&MC) 0.042 0.419 0.756 9.390 0.1988 0.0147 0.1127
MotionLCM (2-step, LC&MC) 0.047 0.397 0.759 9.469 0.1960 0.0143 0.1092
MotionLCM (4-step, LC&MC) 0.063 0.444 0.753 9.355 0.2089 0.0172 0.1140

MotionLCM-M (1-step, LC&MC) 0.044 0.300 0.789 9.774 0.0274 0.0023 0.0505
MotionLCM-M (2-step, LC&MC) 0.050 0.248 0.799 9.828 0.0274 0.0024 0.0503
MotionLCM-M (4-step, LC&MC) 0.066 0.236 0.802 9.882 0.0277 0.0024 0.0504

as shown in Table 2, our MotionLCM boasts an impres-
sive real-time runtime efficiency, averaging around 30ms
per motion sequence during inference. This performance
exceeds that of previous diffusion-based methods [4]–[6]
and even surpasses MLD [6] by an order of magnitude.
Furthermore, despite employing only one-step inference,
our MotionLCM can approximate or even surpass the per-
formance of MLD [6] (DDIM [36] 50 steps). With two-step
inference, we achieve the best R-Precision and MM Dist met-
rics, while increasing the sampling steps to four yields the
best FID. The above results demonstrate the effectiveness
of latent consistency distillation. In addition, we propose
MLD-M, which achieves a significant quantitative improve-
ment in motion generation performance compared to its
predecessor, MLD [6]. Moreover, unlike B2A-HDM [94],
which relies on an overcomplicated multi-denoiser frame-
work to solve the single-latent-token limitation, MLD-M
surpasses B2A-HDM by a large margin while using only
one single denoiser. Thanks to the powerful MLD-M, the
distillation performance of MotionLCM-M has also been sig-
nificantly improved, further advancing the state of text-to-
motion generation by excelling in inference speed, motion
generation quality, and text alignment capability. For the
qualitative results, as shown in Figure 8, MotionLCM not
only accelerates motion generation to real-time speed but
also delivers high-quality outputs, closely aligning with the
textual descriptions. MLD-M and MotionLCM-M demon-
strate substantial improvement in motion-text alignment
capability while showcasing more abundant motion details.

4.1.4 Comparisons on Controllable Motion Generation
For initial-motion-based control, as shown in Table 3,
we compare our MotionLCM with OmniControl [38] and
MLD [6]. We observe that OmniControl struggles with

multi-joint control and falls short in both generation qual-
ity and control performance compared to MotionLCM. To
verify the effectiveness of the latent generated by our Mo-
tionLCM for training motion ControlNet, we conducted the
following two sets of experiments: “LC” and “MC”, which
indicate introducing control supervision in the latent space
and motion space. It can be observed that under the same
experimental settings, MotionLCM maintains higher fidelity
and significantly outperforms MLD [6] in motion control
performance. This demonstrates that the latent generated
by MotionLCM is more effective for training motion Con-
trolNet compared to MLD [6]. In terms of inference speed,
MotionLCM (1-step) is 1929× faster compared to Omni-
Control [38] and 13× faster than MLD [6]. Moreover, our
MotionLCM-M enhances control performance by an order
of magnitude compared to its predecessor, while delivering
superior motion quality (FID) and improved motion-text
alignment (R-Precision). It also maintains inference speed
comparable to its predecessor, ranging from 40ms to 70ms
per motion sequence. For joint-based control, as shown
in Table 4, it can be observed that relying solely on mo-
tion ControlNet makes it difficult for our MotionLCM-M
to achieve precise joint control. However, our proposed
consistency latent tuning method outperforms OmniControl
in terms of motion generation quality, control precision,
and inference speed, fully validating its effectiveness. For
qualitative results, as shown in Figure 9, OmniControl fails
to control the initial poses in the first example and does not
generate motion that aligns with the text in the second case.
However, our MotionLCM not only adheres to the control
of the initial poses but also generates motions that match
the textual descriptions. Additionally, our MotionLCM-M
achieves superior control accuracy compared to its prede-
cessor, particularly in the first and fourth control examples.
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“the person is widewalking.”

MotionLCM

(w/o ControlNet)

MotionLCM

(w/ ControlNet)
OmniControl Real

“a person walks three steps to his right, then five steps to his left, and finally three steps to his right.”

“this person is walking in circles then moves across room to step around an object.”

“the person is holding their head while walking.”

0.045s90.00s0.033s

0.030s 85.11s 0.041s

0.033s

0.029s
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86.77s 0.047s
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(w/ ControlNet)

0.041s
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Fig. 9: Qualitative comparison of the state-of-the-art methods in the initial-motion-based motion control task. We provide
the visualized motion results and real references from four prompts. Compared to OmniControl [38], MotionLCM with
ControlNet not only generates the initial poses that accurately follow the given multi-joint trajectories (i.e., the green poses
in real references) but also produces motions that closely align with the texts. Additionally, our MotionLCM-M offers better
control accuracy than its predecessor, especially in the first and fourth control examples.

4.2 Music-to-Dance

4.2.1 Experimental setup

Datasets. We conduct experiments on the AIST++ [73]
dataset, which contains 992 dance motions, each paired with
its corresponding music. Following the previous work [75],
952 motion sequences are used for training, while the re-
maining 40 are reserved for evaluation.
Evaluation metrics. We evaluate the dance generation mod-
els from four aspects. First, similar to the T2M task, we use
AITS to measure the inference speed. Second, Beat Align-
ment Score (BAS [73]) is utilized to quantitatively assess the
motion-music correlation, based on the similarity between
the kinematic beats and music beats. Lastly, for motion
quality and diversity, we employ the extracted kinematic
features [95] and geometric features [96] to calculate the FID
(i.e., FIDk and FIDg) and Diversity (i.e., Divk and Divg).
Implementation details. For our part-based VQ-VAE, we
follow the previous work [7] to adopt a standard CNN-
based architecture with 1D convolutions and residual blocks
to construct the encoders and decoders. The temporal down-
sampling scale is 16 and the codebook size C is set to 512.
The dimension size of the codebook entries is 64. We employ
the AdamW [91] optimizer to train the part-based VQ-VAE
for 300 epochs. The batch size and learning rate are set to
128 and 3e-5. The commitment loss weight λcommit is set to

0.02 by default. For VQ-MLD and MotionLCM, we use the
AdamW [91] optimizer for 4000 and 700 epochs of training.
Both models employ a cosine decay learning rate scheduler
with 1K iterations of linear warm-up. The learning rate is
set to 2e-4 with batch sizes of 128 and 256. In the training
of MotionLCM, we set the training guidance scale range as
[wmin, wmax] = [6, 12] with the testing guidance scale set to
15 and the EMA rate µ = 0.95 by default. We adopt the
DDIM [36] solver with skipping interval k = 20 and choose
the Huber [89] loss as the distance measuring function d. We
implement our model using PyTorch [93] with training and
testing on an NVIDIA RTX 4090 GPU.

4.2.2 Comparisons on Music-to-Dance
As shown in Table 5, we present a quantitative comparison
of our VQ-MLD and MotionLCM with existing state-of-the-
art methods [70]–[73], [75], [76], [78]. The results are bor-
rowed from the previous works [75], [78]. Since the primary
contribution of our MotionLCM is to accelerate the inference
speed of diffusion models, we mainly focus on comparing
diffusion-based methods (i.e., Lodge [78] and EDGE [76]).
We observe that our VQ-MLD outperforms both Lodge and
EDGE in terms of motion generation quality and diversity,
while also producing dance sequences with better beat
alignment. Furthermore, VQ-MLD achieves a 10× faster
inference speed compared to Lodge and EDGE, effectively
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TABLE 4: Comparison of joint-based motion control on HumanML3D [1] dataset. We observe that relying solely on motion
ControlNet is less effective for sparse control signals compared to dense initial-motion-based motion control. In contrast,
our consistency latent tuning (CLT) method handles such sparse control signals well and outperforms OmniControl [38] in
terms of motion generation quality, control precision, and inference speed (5× faster). Bold indicate the best result.

Methods Joint AITS ↓ FID ↓ R-Precision ↑ Diversity → Traj. err. ↓ Loc. err. ↓ Avg. err. ↓
Top 3 (50cm) (50cm)

Real - - 0.002 0.797 9.503 0.0000 0.0000 0.0000

MDM [5]

Pelvis

16.34 0.698 0.602 9.197 0.4022 0.3076 0.5959
PriorMDM [23] 20.19 0.475 0.583 9.156 0.3457 0.2132 0.4417
GMD [37] 137.63 0.576 0.665 9.206 0.0931 0.0321 0.1439
OmniControl [38] 81.00 0.218 0.687 9.422 0.0387 0.0096 0.0338
MotionLCM-M (w/ ControlNet) 0.066 0.393 0.787 9.837 0.1080 0.0581 0.1386
MotionLCM-M (w/ CLT) 13.68 0.202 0.816 9.707 0.0039 0.0003 0.0203

OmniControl [38]
Pelvis

81.00 0.322 0.691 9.545 0.0404 0.0085 0.0367
MotionLCM-M (w/ ControlNet) 0.066 0.475 0.779 10.013 0.1617 0.0841 0.1838
MotionLCM-M (w/ CLT) 13.68 0.202 0.816 9.707 0.0039 0.0003 0.0203

OmniControl [38]
Left foot

81.00 0.280 0.696 9.553 0.0594 0.0094 0.0314
MotionLCM-M (w/ ControlNet) 0.066 0.498 0.779 9.984 0.2607 0.1229 0.2304
MotionLCM-M (w/ CLT) 13.68 0.207 0.823 9.622 0.0113 0.0005 0.0218

OmniControl [38]
Right foot

81.00 0.319 0.701 9.481 0.0666 0.0120 0.0334
MotionLCM-M (w/ ControlNet) 0.066 0.467 0.782 9.975 0.2459 0.1127 0.2278
MotionLCM-M (w/ CLT) 13.68 0.218 0.818 9.641 0.0123 0.0006 0.0219

OmniControl [38]
Head

81.00 0.335 0.696 9.480 0.0422 0.0079 0.0349
MotionLCM-M (w/ ControlNet) 0.066 0.449 0.782 9.962 0.1971 0.0977 0.2136
MotionLCM-M (w/ CLT) 13.68 0.179 0.817 9.694 0.0027 0.0002 0.0214

OmniControl [38]
Left wrist

81.00 0.304 0.680 9.436 0.0801 0.0134 0.0529
MotionLCM-M (w/ ControlNet) 0.066 0.404 0.789 9.999 0.3965 0.1912 0.3150
MotionLCM-M (w/ CLT) 13.68 0.194 0.822 9.614 0.0105 0.0005 0.0265

OmniControl [38]
Right wrist

81.00 0.299 0.692 9.519 0.0813 0.0127 0.0519
MotionLCM-M (w/ ControlNet) 0.066 0.418 0.786 10.012 0.3822 0.1806 0.3079
MotionLCM-M (w/ CLT) 13.68 0.204 0.821 9.656 0.0094 0.0007 0.0265

OmniControl [38]
Average

81.00 0.310 0.693 9.502 0.0617 0.0107 0.0404
MotionLCM-M (w/ ControlNet) 0.066 0.452 0.783 9.991 0.2740 0.1315 0.2464
MotionLCM-M (w/ CLT) 13.68 0.201 0.820 9.656 0.0084 0.0005 0.0231
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Fig. 10: Qualitative results of VQ-MLD and MotionLCM
in the music-to-dance task. We provide visualized results
for five different dance genres, demonstrating that our
models are capable of generating impressive dance motion
sequences. Moreover, the generated dance movements align
well with the given music styles.

demonstrating the efficacy of our proposed dual-part VQ-
based latent diffusion framework. Building on the powerful
VQ-MLD, our MotionLCM achieves an inference speed
an order of magnitude faster than VQ-MLD (50ms∼80ms
per motion sequence), while also achieving state-of-the-art
performance in motion quality and beat alignment. This
demonstrates the effectiveness of MotionLCM for real-time
music-to-dance generation. For the qualitative results, as
shown in Figure 10, our models can generate diverse dance
movements based on different types of music, with the
motion rhythms aligning well with the beats of the music.
Moreover, our MotionLCM significantly outperforms previ-
ous approaches in terms of inference speed, achieving real-
time music-to-dance generation.

5 CONCLUSION

In this paper, we extend our ECCV‘24 conference paper [12]
with three key contributions. First, we propose MotionLCM-
M, which incorporates a latent adapter to directly control
the VAE compression rate, addressing the lack of expres-
sive motion details caused by suboptimal latent space and
enabling a more compact and expressive latent space for
multi-latent-token consistency distillation. Second, we intro-
duce consistency latent tuning, a mechanism that iteratively
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TABLE 5: Comparison of music-to-dance on AIST++ [73] test set. We present the results of (1, 2, 4)-step inference. To ensure
a fair comparison, we evaluate the average runtime of each model by generating a dance sequence consisting of 1200
frames. “∗” denotes the diffusion-based method. Bold and underline indicate the best and the second best result.

Method AITS ↓ Motion Quality Motion Diversity BAS ↑
FIDk ↓ FIDg ↓ Divk ↑ Divg ↑

Real - 17.10 10.60 8.19 7.45 0.2374

Li et al. [70] 5.589 86.43 43.46 6.85 3.32 0.1607
DanceNet [71] 8.335 69.18 25.49 2.86 2.85 0.1430
DanceRevolution [72] 0.308 73.42 25.92 3.52 4.87 0.1950
FACT [73] 23.21 35.35 22.11 5.94 6.18 0.2209
Bailando [75] 5.211 28.16 9.62 7.83 6.34 0.2332

EDGE∗ [76] 3.995 42.16 22.12 3.96 4.61 0.2334
Lodge∗ [78] 4.671 37.09 18.79 5.58 4.85 0.2423

VQ-MLD∗ 0.446 30.38 17.82 6.91 9.08 0.2549
MotionLCM (1-step) 0.058 52.29 13.78 3.45 5.38 0.2358
MotionLCM (2-step) 0.064 42.89 13.99 4.07 6.06 0.2229
MotionLCM (4-step) 0.078 26.03 13.70 5.22 5.67 0.2874

refines the learnable latent noise using gradients of error
derived from the motion space, effectively handling sparse
control signals while preserving the naturalness of gener-
ated motions. Finally, we extend our method to the music-
to-dance task by developing a VQ-based motion latent diffu-
sion model (VQ-MLD) that jointly captures upper and lower
body dynamics, achieving state-of-the-art performance with
real-time inference speed. As the highlight of the entire
paper, we break the curse of single-latent-token diffusion
in an extremely minimalist way, enabling the scaling of
the denoiser model. This marks an important step towards
future exploration, with a focus on big data and big model.
At the same time, we remain dedicated to open-sourcing our
work to serve the community, staying true to our mission.
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Supplementary Material

APPENDIX A
ADDITIONAL EXPERIMENTS

A.1 Eliminating structural defects in the original denoiser architecture
In the denoising transformer, the original MLD architecture leverages stacked transformer encoder layers with a skip-
connection structure to improve modeling capability. Its self-attention module incorporates three distinct token types: (1)
latent tokens derived from the VAE encoder, (2) sentence-level text feature, and (3) diffusion time step embedding.
Within the network, we identified two structural defects: (i) Unlike other tokens, the VAE latent tokens are directly fed
into the self-attention module without passing through a learnable linear layer. The specific reason here is that the VAE
latent tokens have a feature dimension of 256, which is consistent with the hidden dimension of the self-attention module.
Therefore, dimensional adjustment is omitted. However, this bypass means that the VAE latent tokens are not modulated
to better handle multimodal signals in the self-attention, potentially making their integration into the model less effective.
(ii) The text feature passes through a ReLU activation function first before the learnable linear layer. This ReLU function
suppresses negative values, leading to the loss of valuable textual information encoded in these negative components. To
rectify these structural flaws, we define two types of operations.

• Op1: introduces a trainable linear layer after the VAE latent tokens to enhance multimodal signal modulation.
• Op2: removes the unnecessary ReLU activation function to preserve negative components in the text feature.

Fig. 11: Impact of Op1 and Op2 on MLD performance.

As shown in Figure 11, Op1 significantly improves both motion generation quality (FID) and motion-text alignment
capability (R-Precision Top-1), while Op2 demonstrates that preserving the negative information filtered out by the ReLU
activation function is essential for enhancing text alignment (Here, we observe that using activation functions like SiLU,
which preserve negative values, achieves the same effect.). We obtain the results using the VAE checkpoint provided by
the authors of MLD and train MLDs using our custom training settings. These two simple yet effective operations can have
a significant impact on the generation performance of MLD and are adopted in our subsequent exploratory experiments.

A.2 Impact of the hyperparameters of training MotionLCM
We conduct a comprehensive analysis of the training hyperparameters of MotionLCM, including the training guidance
scale range [wmin, wmax], EMA rate µ, skipping interval k, and the type of loss. We summarize the evaluation results
based on one-step inference in Table 6. We find out that using a dynamic training guidance scale (e.g., w ∈ [5, 15]) during
training leads to an improvement in model performance compared to using a static training guidance scale (e.g., w = 7.5).
Additionally, an excessively large range for the training guidance scale can also negatively impact the performance of the
model (e.g., w ∈ [2, 18]). Regarding the EMA rate µ, we observe that the larger the value of µ, the better the performance of
the model. This indicates that maintaining a slower update rate for the target network Θ− helps improve the performance
of latent consistency distillation. When the skipping interval k continues to increase, the performance of the distillation
model improves progressively, but larger values of k (e.g., k = 50) may result in inferior results. As for the type of loss, the
Huber loss [89] significantly outperforms the L2 loss, demonstrating its superior robustness.

A.3 Impact of control loss weights λ

To verify the impact of different control loss weights λ on the control performance of MotionLCM, we report the
experimental results in Table 7. We also include experiments of MotionLCM without ControlNet (i.e., only text-to-motion)
for comparison. We found a significant improvement in control-related metrics (e.g., Loc. err.) after introducing motion
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TABLE 6: Ablation study on different training guidance scale ranges [wmin, wmax], EMA rates µ, skipping intervals k and
types of loss. We use metrics in Table 2 and adopt a one-step inference setting with the CFG scale of 7.5 for fair comparison.

Methods R-Precision ↑ FID ↓ MM Dist ↓ Diversity → MModality ↑Top 1

Real 0.511±.003 0.002±.000 2.974±.008 9.503±.065 -

MotionLCM (w ∈ [5, 15]) 0.502±.003 0.467±.012 3.022±.009 9.631±.066 2.172±.082

MotionLCM (w ∈ [2, 18]) 0.497±.003 0.481±.009 3.030±.010 9.644±.073 2.226±.091

MotionLCM (w = 7.5) 0.486±.002 0.479±.009 3.094±.009 9.610±.072 2.320±.097

MotionLCM (µ = 0.95) 0.502±.003 0.467±.012 3.022±.009 9.631±.066 2.172±.082

MotionLCM (µ = 0.50) 0.498±.003 0.478±.009 3.022±.010 9.655±.071 2.188±.087

MotionLCM (µ = 0) 0.499±.003 0.505±.008 3.018±.009 9.706±.070 2.123±.085

MotionLCM (k = 50) 0.488±.003 0.547±.011 3.096±.010 9.511±.074 2.324±.091

MotionLCM (k = 20) 0.502±.003 0.467±.012 3.022±.009 9.631±.066 2.172±.082

MotionLCM (k = 10) 0.497±.003 0.449±.009 3.017±.010 9.693±.075 2.133±.086

MotionLCM (k = 5) 0.488±.003 0.438±.009 3.044±.009 9.647±.074 2.147±.083

MotionLCM (k = 1) 0.442±.002 0.635±.011 3.255±.008 9.384±.080 2.146±.075

MotionLCM (w/ Huber) 0.502±.003 0.467±.012 3.022±.009 9.631±.066 2.172±.082

MotionLCM (w/ L2) 0.486±.002 0.622±.010 3.114±.009 9.573±.069 2.218±.086

ControlNet (i.e., λ = 0). Furthermore, control performance can be further improved by introducing control loss (i.e., λ > 0).
Increasing the weight λ enhances control performance but leads to a decline in the generation quality, which is reflected in
higher FID scores. To balance these two aspects, we adopt λ = 1 as our default setting for training motion ControlNet.

TABLE 7: Ablation study on different control loss weights λ. We present the results of (1, 2, 4)-step inference. We add the
MotionLCM without ControlNet for comparison.

Methods FID ↓ R-Precision ↑ Diversity → Traj. err. ↓ Loc. err. ↓ Avg. err. ↓
Top 3 (50cm) (50cm)

Real 0.002 0.797 9.503 0.0000 0.0000 0.0000

MotionLCM (1-step, w/o control) 0.467 0.803 9.631 0.7605 0.2302 0.3493
MotionLCM (2-step, w/o control) 0.368 0.805 9.640 0.7646 0.2214 0.3386
MotionLCM (4-step, w/o control) 0.304 0.798 9.607 0.7739 0.2207 0.3359

MotionLCM (1-step, λ = 0) 0.319 0.752 9.424 0.2986 0.0344 0.1410
MotionLCM (2-step, λ = 0) 0.315 0.770 9.427 0.2840 0.0328 0.1365
MotionLCM (4-step, λ = 0) 0.328 0.745 9.441 0.2973 0.0339 0.1398

MotionLCM (1-step, λ = 0.1) 0.344 0.753 9.386 0.2711 0.0275 0.1310
MotionLCM (2-step, λ = 0.1) 0.324 0.759 9.428 0.2631 0.0256 0.1268
MotionLCM (4-step, λ = 0.1) 0.357 0.743 9.415 0.2713 0.0268 0.1309

MotionLCM (1-step, λ = 1.0) 0.419 0.756 9.390 0.1988 0.0147 0.1127
MotionLCM (2-step, λ = 1.0) 0.397 0.759 9.469 0.1960 0.0143 0.1092
MotionLCM (4-step, λ = 1.0) 0.444 0.753 9.355 0.2089 0.0172 0.1140

MotionLCM (1-step, λ = 10.0) 0.636 0.744 9.479 0.1465 0.0097 0.0967
MotionLCM (2-step, λ = 10.0) 0.551 0.757 9.569 0.1590 0.0107 0.0987
MotionLCM (4-step, λ = 10.0) 0.568 0.742 9.486 0.1723 0.0132 0.1045

A.4 Impact of different control ratios τ and number of control joints K

In Table 8, we present the results of all models with the testing control ratio as 0.25 and keep the number of control joints
K equal in both training and testing. We found that the model with the fixed training control ratio (i.e., τ = 0.25) performs
better compared to a dynamic ratio (e.g., τ ∈ [0.1, 0.5]), and we discover that our model maintains good performance when
incorporating additional redundant control signals, such as whole-body joints with K = 22.

A.5 Comparison to other ODE Solvers

To validate the effectiveness of latent consistency distillation, we compare three ODE solvers (DDIM [36], DPM [86],
DPM++ [87]). The quantitative results shown in Table 9 demonstrate that our MotionLCM notably outperforms baseline
methods. Moreover, unlike DDIM [36], DPM [86], and DPM++ [87], requiring more peak memory per sampling step when
using CFG [88], MotionLCM only requires one forward pass, saving both time and memory cost.



19

TABLE 8: Ablation study on different control ratios τ and number of control joints K . We report the results of (1, 2, 4)-step
inference. “∗” is the default training setting.

Methods FID ↓ R-Precision ↑ Diversity → Traj. err. ↓ Loc. err. ↓ Avg. err. ↓
Top 3 (50cm) (50cm)

Real 0.002 0.797 9.503 0.0000 0.0000 0.0000

MotionLCM∗ (1-step, τ = 0.25, K = 6) 0.419 0.756 9.390 0.1988 0.0147 0.1127
MotionLCM∗ (2-step, τ = 0.25, K = 6) 0.397 0.759 9.469 0.1960 0.0143 0.1092
MotionLCM∗ (4-step, τ = 0.25, K = 6) 0.444 0.753 9.355 0.2089 0.0172 0.1140

MotionLCM (1-step, τ ∈ [0.1, 0.25]) 0.456 0.757 9.477 0.2821 0.0234 0.1214
MotionLCM (2-step, τ ∈ [0.1, 0.25]) 0.409 0.769 9.592 0.2707 0.0230 0.1179
MotionLCM (4-step, τ ∈ [0.1, 0.25]) 0.457 0.757 9.540 0.2928 0.0256 0.1228

MotionLCM (1-step, τ ∈ [0.1, 0.5]) 0.448 0.763 9.538 0.2390 0.0182 0.1182
MotionLCM (2-step, τ ∈ [0.1, 0.5]) 0.413 0.768 9.517 0.2349 0.0180 0.1153
MotionLCM (4-step, τ ∈ [0.1, 0.5]) 0.446 0.753 9.498 0.2517 0.0199 0.1196

MotionLCM (1-step, K = 12) 0.412 0.753 9.412 0.2072 0.0110 0.1029
MotionLCM (2-step, K = 12) 0.410 0.758 9.509 0.1979 0.0108 0.1000
MotionLCM (4-step, K = 12) 0.442 0.755 9.380 0.2169 0.0132 0.1048

MotionLCM (1-step, K = 22(whole-body)) 0.436 0.748 9.379 0.2143 0.0083 0.0914
MotionLCM (2-step, K = 22(whole-body)) 0.413 0.758 9.492 0.2061 0.0082 0.0881
MotionLCM (4-step, K = 22(whole-body)) 0.461 0.745 9.459 0.2173 0.0097 0.0918

TABLE 9: Quantitative results with the testing CFG scale w = 7.5. MotionLCM notably outperforms baseline methods [36],
[86], [87] on HumanML3D [1] dataset, demonstrating the effectiveness of latent consistency distillation.

Methods
R-Precision (Top 3) ↑ FID ↓

1-Step 2-Step 4-Step 1-Step 2-Step 4-Step

DDIM [36] 0.651±.003 0.691±.002 0.765±.003 4.022±.043 2.802±.038 0.966±.018

DPM [86] 0.651±.003 0.691±.002 0.777±.003 4.022±.043 2.798±.038 0.727±.015

DPM++ [87] 0.651±.003 0.691±.002 0.777±.003 4.022±.043 2.798±.038 0.684±.015

MotionLCM 0.803±.002 0.805±.002 0.798±.002 0.467±.012 0.368±.011 0.304±.012

A.6 Impact of different testing CFGs

As shown in Figure 12, we provide an extensive ablation study on the testing CFG [88]. It can be observed that, under
different testing CFGs, increasing the number of inference steps continuously improves the performance. However, further
increasing the inference steps results in comparable performance but significantly increases the time cost.

Fig. 12: Comparison of testing CFGs

APPENDIX B
MORE QUALITATIVE RESULTS

In this section, we provide more qualitative results of our MotionLCM. Figure 13 presents more generation results on the
text-to-motion task. Figure 14 displays additional visualization results on the motion control task. All videos shown in the
figures can be found on our website (https://dai-wenxun.github.io/MotionLCM-page).

APPENDIX C
METRIC DEFINITIONS

Time cost: To assess the inference efficiency of models, we follow [6] to report the Average Inference Time per Sentence
(AITS) measured in seconds. We calculate AITS on the test set of HumanML3D [1] by setting the batch size to 1 and
excluding the time cost for model and dataset loading parts.

https://dai-wenxun.github.io/MotionLCM-page
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“this person bends 

forward as if to bow.”

“a person 

does a jump”
“a person is doing 

jumping jacks”
“a person runs forward 

and stops short.”
“the man is throwing 

his right hand”

“with arms out to the sides

a person walks forward”

“the person is 

jogging around.”
“the person is doing 

a dance move.”

“a hunched individual slowly

wobbles forward in a drunken manner.”

“a person waves 

both arms in the air.”

“a man walks forward in a 

snake like pattern.”

Fig. 13: More qualitative results of MotionLCM on the text-to-motion task.

Motion quality: Frechet Inception Distance (FID) measures the distributional difference between the generated and real
motions, calculated using the feature extractor associated with a specific dataset, e.g., HumanML3D [1].
Motion diversity: Following [3], [18], we report Diversity and MultiModality to evaluate the generated motion diversity.
Diversity measures the variance of the generated motions across the whole set. Specifically, two subsets of the same
size Sd are randomly sampled from all generated motions with their extracted motion feature vectors {v1, ...,vSd

} and
{v′

1, ...,v
′

Sd
}. Diversity is defined as follows,

Diversity =
1

Sd

Sd∑
i=1

||vi − v
′

i||2. (17)

Different from Diversity, MultiModality (MModality) measures how much the generated motions diversify within each
textual description. Specifically, a set of textual descriptions with size C is randomly sampled from all descriptions.
Then we randomly sample two subsets with the same size I from all generated motions conditioned by the c-th textual
description, with extracted feature vectors {vc,1, ...,vc,I} and {v′

c,1, ...,v
′

c,I}. MModality is formalized as follows,

MModality =
1

C × I

C∑
c=1

I∑
i=1

||vc,i − v
′

c,i||2. (18)

Condition matching: [1] provides motion/text feature extractors to generate geometrically closed features for matched
text-motion pairs and vice versa. Under this feature space, evaluating motion-retrieval precision (R-Precision) involves
mixing the generated motion with 31 mismatched motions and then calculating the text-motion Top-1/2/3 matching
accuracy. Multimodal Distance (MM Dist) calculates the mean distance between the generated motions and texts.
Control error: Following [38], we report Trajectory error, Location error, and Average error to assess the motion control
performance. Trajectory error (Traj. err.) is defined as the proportion of unsuccessful trajectories, i.e., if a control joint in
the generated motion exceeds a certain distance threshold from the corresponding joint in the given control trajectory, it is
considered a failed trajectory. Similar to the Trajectory error, Location error (Loc. err.) is defined as the ratio of unsuccessful
joints. In our experiments, we adopt 50cm as the distance threshold to calculate the Trajectory error and Location error.
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“a person waves with their left hand”

“a person jumps up and down on their toes”

Real w/ control w/o control

“a person raises their arms high above their head.”

“person is standing forward doing jumping jacks.”

“a person walks forwards casually.”

Fig. 14: More qualitative results of MotionLCM on the motion control task.

Average error (Avg. err.) denotes the mean distance between the control joint positions in the generated motion and those
in the given control trajectory.
Reconstruction error: Mean Per Joint Position Error (MPJPE) quantifies the average Euclidean distance between the
reconstructed joint positions and the corresponding ground truth joint positions, following an alignment of the root joint
(typically the pelvis) to eliminate global positional discrepancies. This metric provides an indication of the accuracy of joint
localization in 3D space. Feature error (Fea. err.) measures the L2 norm between the reconstructed motion features and the
real motion features, providing a feature-level assessment of the reconstruction quality.
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